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Abstract. The flow equation method (Wegner, 1994) is used as continuous unitary transformation to
construct perturbatively effective Hamiltonians. The method is illustrated in detail for dimerized and
frustrated antiferromagnetic S = 1/2 chains. The effective Hamiltonians conserve the number of elementary
excitations which are S = 1 magnons for the dimerized chains. The sectors of different number of excitations
are clearly separated. Easy-to-use results for the gap, the dispersion and the ground state energies of the
chains are provided.
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1 Introduction

Perturbation theory is one of the most important and most
versatile tools for problems which are not exactly solvable.
Various methods depending on the problem under study
have been invented and used. Due to the enormous in-
crease in computer capacity it is a very interesting task to
use algebraic programmes to perform perturbative calcu-
lations.

The aim of the present work is to propose a general
perturbation scheme which splits naturally into two sub-
sequent steps. Both these steps can be implemented in a
direct manner on the computer. The first step is not model
specific. It relies only on two prerequisites.

(i) The unperturbed Hamiltonian H0 must have an
equidistant spectrum bounded from below. Without
loss of generality we may assume that Ei = i for
i ∈ {0, 1, 2, 3, . . .}. We say that i denotes the number
of energy quanta in the system. By Ui the correspond-
ing subspaces are denoted.

(ii) The perturbing Hamiltonian HS links subspaces Ui
and Uj only if |i − j| is bounded from above, i.e.
there is a number N > 0 such that HS can be written
as HS =

∑N
n=−N Tn where Tn increments (or decre-

ments, if n < 0) the number of energy quanta by n

[H0, Tn] = nTn. (1)
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Thus the full problem reads

H = H0 + λ
N∑

n=−N
Tn (2)

where λ is the perturbation parameter supposed to be
small λ < 1. In this work we will restrict to N = 2. The
first step consists in finding a systematic mapping of the
problem in equation (2) to an effective one given by a
Hamiltonian Heff which conserves the number of energy
quanta.

The second step is the model specific one. It consists in
the actual calculation of Heff for a given number of energy
quanta.

To illustrate the abstract ideas formulated above we
will use the frustrated and dimerized S = 1/2 chain given
by (j counts the sites)

H = J0

L∑
j=0

[
(1 + (−1)jδ)SjSj+1 + α0Sj−1Sj+1

]
, (3)

where L is the number of sites. A situation consistent with
equation (2) is found for strong dimerization. Hence we
rewrite Hamiltonian (3) as (subscript i counts the dimers)

H = J

L
2−1∑
i=0

[S2iS2i+1 + λS2iS2i−1

+α(S2iS2i−2 + S2i−1S2i+1)] (4)
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with

J = J0(1 + δ) (5a)
λ = (1− δ)/(1 + δ) (5b)
α = α0/(1− δ). (5c)

The unperturbed part H0 (up to a trivial constant 3L/8)
and the perturbing part HS are then

H0 =
∑
i

[S2iS2i+1 + 3/4] (6a)

HS =
∑
i

[S2iS2i−1 + α (S2iS2i−2 + S2i−1S2i+1)] , (6b)

where we measure implicitly all energies in units of J . The
ground state of H0 is the product of singlets on the dimers,
i.e. the bonds (2i, 2i+ 1). The energy quanta are here the
excited dimers, namely the local triplets. The number of
triplets classifies the degenerate energy eigen spaces of the
unperturbed problem.

Besides the purpose to serve as an example for per-
turbation by flow equations the frustrated and dimerized
chain is of considerable physical interest itself. Ideal spin-
Peierls systems are one-dimensional spin systems which
are coupled to the lattice. At low enough temperatures
they dimerize since this dimerization leads to a gain in
magnetic energy ∝ δ4/3 which overcompensates the loss
in elastic energy ∝ δ2, see e.g. [1] and references therein.
So spin-Peierls systems provide dimerized spin chains in
a natural way. The first inorganic spin-Peierls substance
CuGeO3 in particular provides the example of a frustrated
and dimerized spin chain since there is much evidence
that a certain amount of frustration is present in this
substance [2–4]. Other examples are strongly anisotropic
substances where the dimerization is built-in in the chem-
ical structure. Examples are Cu2(C5H12N2)2Cl4 [5] and
(VO)2P2O7 [6]. Of course, the real substance mostly dis-
play also some additional two- or three-dimensional cou-
pling. But the approach we present here is suited to tackle
even these systems, see e.g. reference [7].

One might argue that exact diagonalization or quan-
tum Monte Carlo approaches are better suited to calcu-
late dispersions ω(k) or similar quantities in d = 1. These
methods, however, yield only the result for the chosen pa-
rameter set. The perturbative results, however, will be
obtained as polynomials in the weak bond coupling λ and
the frustration α. Thus, once computed, anyone can use
the perturbative results easily to fit measured or other-
wise obtained data. Thereby an extremely fast method
for the determination of coupling constants is provided.
Of course, the perturbative approach can be applied only
for λ ≤ 1 where the equal sign represents the worst case.
For λ > 1 the perturbative approach breaks down.

The work is organized as follows. In the next section
we extend the approach of Stein [8] who did a calculation
forN = 1 up to fifth order toN = 2 and up to tenth order.
The work of Stein improved earlier calculations [9] which
generated more intermediate terms (see Ref. [8] for dis-
cussion). The flow equation transformation which is used
by Stein and by us was introduced by Wegner five years

ago [10]. In Section 3 we illustrate our method by apply-
ing it to a one-dimensional Heisenberg antiferromagnetic
S = 1/2 chain. The effective one-triplet Hamiltonian is
computed. The ground state energy, gaps and dispersion
relations are discussed in Section 4. Summary and outlook
conclude the main part of our work.

2 Perturbation by flow equations

All what is presented in this section is based only on the
fact that the initial problem has the form (2) fulfilling the
requirements (i) and (ii) with N = 2.

The general idea behind the flow equation approach
introduced by Wegner [10] is to perform a continuous uni-
tary transformation which makes the problem more easily
tractable. Mostly, one tries to make the problem “more
diagonal”. In our case we will achieve a block diagonal
form. A broad field of application is to identify certain
quasi-particles for which an effective Hamiltonian can be
found. Here, flow equations can be used to implement a
renormalization of a given problem on the Hamiltonian
level, not only on the level of certain observables or cou-
plings [10–12]. Analogous ideas were suggested parallel by
G lazek and Wilson in the form of similarity transforma-
tions [13].

In the present work we do not focus on the renormal-
ization properties of the flow equation approach. Following
Stein [8], we use them to implement in a systematic way
a continuous unitary transformation which maps the per-
turbed system onto the unperturbed one which is easy to
understand.

2.1 General formalism

According to the original idea a running variable ` is
introduced which parameterizes the continuously evolv-
ing Hamiltonian H(`). The starting operator is the bare
Hamiltonian; the operator at infinity is the desired effec-
tive Hamiltonian

H(0) = H0 + λ(T−2 + T−1 + T0 + T1 + T2) (7a)
H(∞) = Heff. (7b)

The unitary evolution is engendered by its antihermitean
infinitesimal generator η(`)

dH(`)
d`

= [η(`),H(`)]. (8)

Applying naively Wegner’s choice for the generator η(`) =
[H0,H(`)] the resulting differential equations quickly be-
come very messy since the band block diagonal structure
of the original problem is lost. By “band block diagonal”
we mean the fact that N has a finite value which does not
change in the course of the flow `→∞.

We will choose a slightly different infinitesimal genera-
tor which allows to keep the band block diagonal structure
of the original problem, i.e. the parameter N stays 2 for
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all values of `. The general Hamiltonian H(`) can be writ-
ten as

H(`) = H0 + λΘ(`) (9)

and the operatorΘ(`) links only subspaces Ui and Uj with
|i− j| ≤ 2.

The most general form of Θ(`) is

Θ(`) =
∞∑
k=1

λk−1
∑
|m|=k

F (`; m)T (m) (10)

where F (`; m) are real-valued functions for which we will
derive nonlinear, but recursive, differential equations be-
low. The other symbols are

m = (m1,m2,m3, . . . ,mk) with (11a)
mi ∈ {0,±1,±2} (11b)
|m| = k (11c)

T (m) = Tm1Tm2Tm3 . . . Tmk (11d)

M(m) =
k∑
i=1

mi. (11e)

The vector m together with the product T (m) encode all
possible products of the incrementing (decrementing) op-
erators Tn as defined in equations (1, 2). The infinitesimal
generator of our choice reads

η(`) =
∞∑
k=1

λk
∑
|m|=k

sgn
(
M(m)

)
F (`; m)T (m). (12)

This choice is very similar to the infinitesimal generator
Mielke proposes for band matrices [14]. An adapted ver-
sion of his proof that such an η leads to (block) diagonal-
ity can be found in Appendix A. For the purposes of the
present perturbative approach the general proof can be
replaced by the observation that the transformation can
be performed successfully to all finite orders. This will be
shown below.

A short computation shows that substituting
sgn
(
M(m)

)
in equation (12) by M(m) would correspond

to the first choice η(`) = [H0,H(`)]. This relies on

[H0, T (m)] = M(m)T (m) (13)

which is a straightforward generalization of equation (1).
Insertion of the ansätze (10) and (12) into equation (8)

leads to

λ
dΘ
d`

= λ[η(`), Θ(`)]

−
∞∑
k=1

λk
∑
|m|=k

sgn
(
M(m)

)
F (`; m)[H0, T (m)]. (14)

Comparison of the coefficients for each term T (m) yields
then a differential equation for the functions F (`; m)

d
d`
F (`; m) = −|M(m)|F (`; m) +

∑
{m1,m2}=m

[
sgn
(
M(m1)

)
− sgn

(
M(m2)

)]
F (`; m1)F (`; m2). (15)

The summation condition {m1,m2} = m means that one
sums over all possible nontrivial breakups of m

m1 = (m1) and m2 = (m2, . . . ,mk)
m1 = (m1,m2) and m2 = (m3, . . . ,mk)
m1 = (m1,m2,m3) and m2 = (m4, . . . ,mk)

...
m1 = (m1, . . . ,mk−2) and m2 = (mk−1,mk)
m1 = (m1, . . . ,mk−1) and m2 = (mk). (16)

This summation notation will also be used in the follow-
ing. The starting conditions follow from (7a)

F (0; m) = 1 for |m| = 1 (17a)
F (0; m) = 0 for |m| > 1. (17b)

From equations (15, 17) we can deduce a number of
relations by induction. First, we see that the functions
F (`; m) are always real. Furthermore, they obey the two
symmetry relations

F (`;−m) = F (`; m) (18a)

F (`;−m) = (−1)|m|+1F (`; m) (18b)

where we use the notation

m = (mk,mk−1, . . . ,m2,m1). (19)

The square bracket in equation (15) ensures that the sum
vanishes if |M(m)| > 2

F (`; m) = 0 for |M(m)| > 2. (20)

For instance, a term generating three energy quanta
M(m) = 3 could only be induced from terms with
M(m1) = 2 and M(m2) = 1 or vice-versa. But such
combinations are suppressed by the square bracket in
equation (15). This observation is at the basis of the
preservation of the band block structure [14]. If we had
chosen the infinitesimal generator η(`) in (12) without
the signum as it would correspond to Wegner’s original
suggestion η(`) = [H0,H(`)] the square bracket in equa-
tion (15) would read [M(m1) − M(m2)] and hence the
band structure of the couplings would be destroyed for
` > 0.

For the solution of equation (15) we observe that the
first term on the right hand side just generates an expo-
nential prefactor

F (`; m) = exp(−|M(m)|`)f(`; m). (21)

The rest of the equation (15) is recursive and can thus be
directly found by integration beginning from the starting
conditions

d
d`
f(`; m) =

∑
{m1,m2}=m

e(|M(m)|−|M(m1)|−|M(m2)|)l

×
[
sgn
(
M(m1)

)
− sgn

(
M(m2)

)]
f(`; m1)f(`; m2).

(22)
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Note that |M(m)| − |M(m1)| − |M(m2)| ≤ 0 holds so
that no exponential growth occurs in the f(`; m). Let us
focus on the functional form of the functions f(`; m). We
state by induction that sums of terms `ie−2µ` occur for
non-negative integers i and µ. More precisely, we obtain

f(`; m) =
Γ (m)∑
µ=0

Pµ(`; m)e−2µ` (23)

where the degree of the polynomials Pµ(`; m) is always
equal or less than |m| and the upper limit of the sum
Γ (m) obeys

Γ (m) =
1
2

−|M(m)|+
|m|∑
i=1

|mi|

 . (24)

In principle it is also possible to write down explicit re-
cursion relations for the polynomials, see for instance ref-
erence [8] for N = 1. But they are of little clarity. If the
actual calculation is done by symbolic calculation it is suf-
ficient to retain that according to equation (15) or equa-
tion (22) expressions of the type (23) have to be mul-
tiplied, added and integrated. This is a straightforward
task and can be implemented in symbolic programmes.

The quantities we are finally interested in are the co-
efficients of Heff = H(` = ∞). From equation (21) we
know that only terms with M(m) = 0 will not vanish for
`→∞. This is exactly what we intended to achieve since
we want Heff to commute with H0 (cf. Eq. (13)) so that
the number of energy quanta (triplets in our example) be-
comes a conserved quantity. Hence, we can write the final
result as

Heff = H0 +
∞∑
k=1

λk
∑

|m|=k,M(m)=0

C(m)T (m) (25a)

C(m) = F (∞; m). (25b)

Further details on the computation of the coefficients will
be given in the next subsection. Results for the C(m) are
presented in Appendix B.

2.2 Computer aided evaluation

We implemented the coefficient computation in C++ be-
cause of its high performance and its class concept which
we used to encode the basic data elements. As an exam-
ple let us consider a generic fourth order coefficient (i.e.
k = 4) f(l; m):

f
(
l; (1, 1, 1,−2)

)
=

1
2
l +

1
2

e−2l − 1
8

e−4l − 3
8
· (26)

This can be stored as a list of basic data elements like
p

q
lie−2µl (27)

each containing four separate integers p, q, i, µ. In fact, p
and q can become very large. So they have to be stored in

a multiprecision data type like long long int on some Unix
systems. Still, all computations can be done very fast in
integers and the results are rigorously exact.

Equation (22) is essential in the computation of the
f(l; m). The basic idea is to build two loops. The outer
loop controls the order starting at k = 2 since the initial
conditions are the values of the f(l; m) in first order. The
inner loop generates all possible m in the current order
k. A single mi in m = (m1, . . . ,mi, . . . ,mk) can take five
different values, see equation (11b). Thus we can introduce
the loop variable n ∈ {0, 1, . . .5k − 1}

n =
5∑
i=0

ai5i. (28)

The coefficients ai ∈ {0, 1, 2, 3, 4} are mapped uniquely
onto the set {−2,−1, 0, 1, 2}. Finally we retain those m,
with |M(m)| ≤ 2. In this way, equation (22) can be cal-
culated for each k and m.

The calculation of a single f(l; m) via equation (22)
can be split in four steps. (i) One has to encapsulate
equation (22) in yet another loop controlling all possible
breakups of m (cf. Eq. (16)). (ii) The functions f(l; m1)
and f(l; m2) known from calculations in lower orders have
to be multiplied for each breakup of m. (iii) One has to
sum over all breakups. (iv) Finally, the result from steps
(i) to (iii) has to be integrated.

Since p and q in the basic data elements (27) can be-
come very large during addition and multiplication, both
operations employ Euklid’s algorithm to generate maxi-
mally canceled fractions p/q. To minimize memory usage
these operations contain simplification subroutines based
on the quick-sort algorithm. These subroutines sort ac-
cording to increasing powers of l and e−2l. Simultaneously,
addends are identified and added if they are of equal type.
The resulting f(l; m) consists of linearly independent ad-
dends only. Due to the quick-sort algorithm the computa-
tion time as function of the number of addends n is only
of order n ln(n).

The final integration can be done easily. The functions
f(l; m) break down to basic data elements (27) so that
(α > 0) ∫ l

0

dl′l
′i =

1
i+ 1

li+1 (29a)

∫ l

0

dl′l
′ie−αl

′
=
i!
α
·

 1
αi
− e−αl

i∑
j=0

lj

j!αi−j

 (29b)

achieves the integration.
To calculate the C(m) one has to perform the l →∞

limit on those f(l; m) for which |M(m)| = 0. Note that
for |M(m)| = 0 one always has α > 0 since α =
|M(m)| − |M(m1)| − |M(m2)| = 0 and |M(m)| = 0 im-
plies the vanishing of |M(m1)| and of |M(m2)|. Hence the
right hand side of equation (22) vanishes due to the square
bracket containing the sign functions. So no such f(l; m)
is generated. Thus the C(m) can be calculated by equa-
tion (29b) omitting the term proportional to e−αl on the
right hand side.
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The symmetry relations (18) can be used as a check
of the results. The C(m) are saved in a file together with
the corresponding m for later usage. They are given up to
order k = 6 in Appendix B. We intend to provide them
up to order k = 10 in electronic form on our homepages
on appearance of this article (see footnote p. 222).

Unfortunately, equation (22) implies also a natural
limitation of the computation. Because of its recursive na-
ture, the f(l; m) of all preceding orders have to be stored.
They are needed to derive the f(l; m) in the current order.
This leads to an exponential memory increase. To calcu-
late all C(m) to order k = 10 inclusively, we used about
30,000,000 basic data elements (27) occupying about 1GB
RAM. Because of the extensive memory use we employed
a SUN Ultra Enterprise 10000 which the Regional Com-
puting Center of the University of Cologne kindly placed
at our disposal. The calculation took about 12 h.

3 Application: dimerized and frustrated
S = 1/2 chain

In this section we demonstrate how the knowledge of the
C(m) in the effective Hamiltonian Heff (25) permits to
perform specific calculations. The first step is to evaluate
the operators Tn for the model under study, here dimerized
spin chains. Then we calculate the ground state energy,
the energy gap and the one-magnon dispersion of the one-
dimensional Heisenberg antiferromagnetic S = 1

2 chain.
This is again done by implementing the equations on a
computer.

3.1 General equations

The explicit form of the operators Tn has to be determined
so that

HS = T−2 + T−1 + T0 + T1 + T2 (30)

(cf. Eqs. (2, 6b)). Let us consider one addend of HS as
starting point

S2iS2i−1 + α (S2iS2i−2 + S2i−1S2i+1) . (31)

Obviously, only neighbouring dimers are affected. For sim-
plicity we first calculate the matrix elements

〈xi−1, xi|S2iS2i−1|xi−1, xi〉 (32)

where xi−1, xi ∈ {s, t1, t0, t−1} are singlets or one of the
triplets on the adjacent dimers i−1 and i. The superscript
n ∈ {0,±1} in tn stands for the Sz component. For some
fixed value of i we write

S2iS2i−1 = T−2 + T−1 + T0 + T1 + T2 (33)

requiring that the subscript indicates the net change of
the number of triplets. In other words matrix elements
connecting a ket of two singlets with a bra of two triplets
belong to T2 and those connecting a ket of one singlet and

Table 1. Action of the operators Ti as defined by equa-
tion (33).

4T a0
|t0,±1, s〉 −→ −|s, t0,±1〉

4T b0
|t0, t±1〉 −→ |t±1, t0〉
|t±1, t±1〉 −→ |t±1, t±1〉
|t±1, t∓1〉 −→ |t0, t0〉 − |t±1, t∓1〉
|t0, t0〉 −→ |t1, t−1〉+ |t−1, t1〉

4T1

|s, t1〉, |t1, s〉 −→ |t1, t0〉 − |t0, t1〉
|s, t0〉, |t0, s〉 −→ |t1, t−1〉 − |t−1, t1〉
|s, t−1〉, |t−1, s〉 −→ |t0, t−1〉 − |t−1, t0〉

4T2

|s, s〉 −→ |t1, t−1〉 − |t0, t0〉+ |t−1, t1〉

one triplet with a bra of two triplets belong to T1 and
so on. In this way one finds all the Tn and their sum is
S2iS2i−1. Table 1 summarizes the results. For later conve-
nience we split T0 = T a0 + T b0 . All other matrix elements
can be constructed by using the relation T †n = T−n. To
incorporate the effect of frustration it is sufficient to note
that a triplet is invariant under spin exchange whereas a
singlet acquires a factor −1. Let

α(S2iS2i−2 + S2i−1S2i+1) =
2∑

n=−2

T ′n. (34)

By spin exchange the T ′n operators defined in equa-
tion (34) are reduced to the Ti as given in Table 1

T ′±2 = −2αT±2 (35a)

T ′±1 = 0 (35b)

T ′a0 = −2αT a0 (35c)

T ′b0 = 2αT b0 . (35d)

Finally, equation (30) implies

T±2 =

L
2−1∑
i=0

(1− 2α)T±2 (36a)

T±1 =

L
2−1∑
i=0

T±1 (36b)

T0 =

L
2−1∑
i=0

(1− 2α)T a0 + (1 + 2α)T b0 . (36c)

The subsequent subsection shows how the Tn operators
can be implemented.

For the antiferromagnetic S = 1/2 Heisenberg chain
given by Hamiltonian (6) we can then calculate the ground
state energy by

E0 = 〈0|Heff |0〉 (37)
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where we used the shorthand |0〉 := |
∏
i si〉 for the product

state of singlets on all dimers which can be viewed as
triplet vacuum.

The actual calculations are done on finite clusters.
From the linked cluster theorem we know that the finite
order contribution of a short-ranged perturbation does not
depend on the cluster size for sufficiently large clusters. In
our one dimensional example only neighbouring dimers are
linked. So it is sufficient to consider 11 dimers to avoid a
wrap-around in order 10, i.e. for 11 dimers or more we are
sure to find the thermodynamic contribution. Moreover,
we can check the size-independence explicitly.

To calculate the one magnon dispersion we have to
consider the subspace with exactly one single singlet be-
ing excited to a triplet. Using |j〉 = |s, s, . . . , t, . . . , s〉 with
one triplet t (Sz component does not matter) on dimer j
we compute the action of the effective Hamiltonian (25)
on |j〉. Since the number of triplets is conserved by con-
struction the initial triplet can only be shifted.

Heff |j〉 = J
∑
i

ai|j + i〉. (38)

The fact that the coefficients ai do not depend on j relies
on the translational invariance. All dimers are equal. But
this is not necessary for our perturbation scheme to hold.
On the contrary, we consider it one of the major advan-
tages of the scheme presented here that it can be done in
real space without knowing the form of the eigen states in
advance.

In 10th order the variable i in equation (38) runs from
−10 to 10. If j is chosen appropriately, a chain segment
with 11 dimers suffices to compute all the coefficients ai.
For instance, for a10 one has to take j = 0 whereas for
a0 the right choice is j = 5. All sites that can be reached
within 10 hops starting at j and ending at j + i must be
contained in the cluster to avoid finite size effects.

Of course, given translational invariance we know that
spatial Fourier transform provides the eigen states |k〉 =√

2/L
∑
i exp(ikj)|j〉 characterized by their lattice mo-

mentum k. The corresponding eigen energies read

ω(k) = 〈k|Heff |k〉 −E0 (39a)

= Ja0 −E0 + J
∞∑
j=1

2aj cos(jk). (39b)

For dimerized chains the dispersion minimum, the
triplet gap, is found at k = 0

∆ = ω(k = 0). (40)

It is beyond the scope of the present paper to com-
pute the effective Hamiltonian in the two-triplet sector.
But an outlook on this issue is in order. Conventional per-
turbation schemes have difficulties to compute properties
for two elementary particles because the structure of the
eigen states is not known beforehand. In particular, bound
states of two elementary particles are extremely difficult to
obtain by conventional perturbative methods. But if the

class POLY:

int prefact;
POLY *next;

short int alphaexp;unsigned int X;
POLY *first:
BDE *next;

class BDE:

Fig. 1. Sketch of the basic data element class.

action of the effective Hamiltonian (25) on two triplets is
calculated everything else can be deduced. First, one has
to determine the coefficients Ai1,i2;j1,j2 defined by

Heff|j1, j2〉 =
∑
ii,i2

Ai1,i2;j1,j2 |i1, i2〉, (41)

where we assume that |j1, j2〉 has a triplet t1 on dimer j1
and a triplet t−1 on dimer j2. This is sufficient to compute
triplets coupled to Stot = 1 as was done successfully in
reference [7]; the wave function ψ(j1, j2) is antisymmetric
under exchange j1 ↔ j2. Second, one has to diagonalize
the matrix defined by the coefficients Ai1,i2;j1,j2 . This can
be carried out by standard Lanzcos algorithms.

Spectral functions are also accessible by flow equa-
tion perturbation if the observable Q under study is uni-
tarily transformed by the same transformation as the
Hamiltonian

dQ(`)
d`

= [η(`), Q(`)]. (42)

This is needed to know the matrix elements after the
transformation. Preliminary studies showed that the
treatment of equation (42) is feasible within the perturba-
tive approach. The necessary programmes are very similar
to those for the Hamiltonian. Yet the treatment of observ-
ables is more laborious than the one of the Hamiltonian
itself.

3.2 Computer aided evaluation

Again C++ is the programming language of our choice.
To encode the states of the dimerized chain it suffices to
reserve two bits per dimer. For instance, four bytes can
encode the state of a chain with 32 sites. The lowest bit
represents site 1, the second lowest represents site 2 and
so on. By applying the Ti in equations (36) these states
acquire polynomials in α as prefactors. Thus we choose
the basic data elements to be objects of the class BDE as
sketched in Figure 1.

The innermost part of the algorithm is the implemen-
tation of the Ti matrices. Each matrix element is repre-
sented by a block of C++ code. These blocks allocate an
appropriate number of basic data elements initialized by
the current state of the chain. Then they modify those bits
which represent the pair of adjacent dimers under study
according to the rules of Table 1. The Ti are implemented
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in five steps:

(i) The number of sites L is chosen even. We introduce
the loop variable

p ∈
{

1, 2, . . . ,
L

2

}
(43)

such that p = 1 addresses dimer 0 together with
dimer 1, p = 2 addresses dimer 2 and dimer 1 and
so on. Periodic boundary conditions are used, i.e.
p = L/2 addresses dimer L/2− 1 with dimer 0.

(ii) From p a four byte long bit mask is constructed
such that the bits referring to the dimers addressed
by p are set to unity and zero otherwise. Thus
p = 1 yields (1, 1, 1, 1, 0, . . . , 0) and p = 2 yields
(0, 0, 1, 1, 1, 1, 0, . . . , 0) and so on .

(iii) The appropriate part x representing the two adja-
cent dimers is cut out by applying the logical AND
operation: (bit mask) AND (X representing the chain
state).

(iv) The decimal value of x ∈ {0, 1, . . . , 15} is used to
jump in a SWITCH(x)-CASE sequence to the ap-
propriate CASE-block, encoding the matrix element
of Ti.

(v) The appropriate prefactor is multiplied to the allo-
cated and modified data elements.

Finally p is incremented by one and one goes back to (i)
as long as p meets condition (43).

Following these steps one obtains a sum of basic data
elements describing an elementary chain state after the
application of a Ti. In general, the complete state after
the application of a Ti is a linear combination of such ele-
mentary states encoded by the unsigned integers X . The
linear combination is stored as a list. Since this list af-
ter its generation may contain identical states it is sorted
according to increasing values of X by a quick-sort al-
gorithm. Prefactors of identical states are added so that
memory usage is reduced.

To calculate products of Ti, the algorithm described
above is applied repeatedly. If the chain state is a linear
combination the algorithm is applied to each addend of
this linear combination.

To calculate the ground state energy (37) the expres-
sion λk

∑
|m|=k C(m)T (m) from equation (25) must be

applied to the triplet vacuum |0〉 for each order k. First
the current index m and its coefficient C(m) are read
from an input file prepared previously, see Section 2.2.
Then T (m) is applied to |0〉 as described above. Since
M(m) = 0, T (m) reproduces |0〉 up to a prefactor which
is a polynomial in α. This polynomial and C(m) are piped
to an algebraic computer programme (Maple) to multiply
them. This scheme is iterated with intermediate summa-
tions by Maple till the final result is found.

The result for the ground state energy per spin of the
Hamiltonian (6) up to 10th order in λ reads

see equation (44) above

where the shorthand λ = 1
4λ is used.

To calculate the dispersion ω(k) the hopping elements
ai in equation (39b) have to be determined. The effect of
T (m) with M(m) = 0 is to shift a triplet by at most |m|
dimers. Hence it suffices to perform the calculation for a
given ai on an appropriate chain segment. The calcula-
tions are analogous to those for the ground state energy.
Note that by equation (38) the general effect of a product
T (m) will be a sum of states each containing one triplet
on different dimers. For a given ai the corresponding state
has to be found in that list. Its polynomial prefactor yields
ai. Results for the hopping elements up to 6th order in λ
are presented in Appendix C.

The calculations took 10 h–30 h strongly depending on
the number of sites L; 100MB-500MB memory were used.
The computations were done on a Sun Ultra workstation.

4 Results and comparison to other methods

So far all results refer to Hamiltonian (4). In this section
we prefer to present the results corresponding to Hamilto-
nian (3) by substituting according to equation (5). Since
λ is the expansion parameter it is substituted before we
manipulate the equations further, see below. The frustra-
tion α on the other hand is treated as a fixed parameter
throughout further manipulations. It is substituted only
at the very end.
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Fig. 2. Ground state energy per site ε vs. dimerization δ with-
out frustration (α0 = 0) for Hamiltonian (4). For details see
main text. The inset shows an enlargement for small δ.

4.1 Ground state energy

Substituting J , λ and α in equation (44) leads to the
dashed curve in Figure 2 called “plain series”. The solid
line represents a more sophisticated approach. Substitut-
ing J and λ leads to an expression in δ and α. In order
to profit from the knowledge that the ground state energy
is lowered by external dimerization as ∆E0 ∝ −δ4/3 [15]
δ = x3/2 is substituted. Thereby α is treated as fixed pa-
rameter which does not change the exponents, here 4/3.
Their values are protected by symmetry [16] as long as
logarithmic corrections are neglected [17,18]. This means
that this statement is true as long as α is below its crit-
ical value αc = 0.241167(±5) [19]. Above this value the
translational invariance is broken spontaneously and the
ground state is dimerized so that the leading power be-
comes linear ∆E0 ∝ −δ (see below).

The result for the ground state energy is expanded in
a Taylor series in x up to order 10 about x = 1. This is
the limit of strong dimerization for which our expansion
holds. Adding the term Y (1−x)11 introduces an unknown
Y which can be fitted such that the linear term in x van-
ishes. In this way the leading order contribution to the en-
ergy lowering agrees with the continuum prediction. The
result of this procedure is depicted as solid curve in Fig-
ure 2 and is labeled accordingly. Both curves are compared
to numeric results from Density Matrix Renormalization
Group (DMRG) shown as symbols. The agreement is ex-
cellent. The accordance is better for the biased extrapola-
tion based on the continuum theoretical power law as was
to be expected. The extrapolated results can be trusted
even quantitatively down to 1 or 2% dimerization.

In absence of frustration (α = α0 = 0) the right hand
side of equation (44) becomes a polynomial in λ of degree
10 with rational coefficients. Using a different perturba-
tion method Barnes et al. [20] calculated the same coeffi-
cients up to order 9, providing a good check. Furthermore,
Gelfand et al. [21] also calculated a polynomial in λ. Their
method gives the coefficients as real numbers up to order

0.0 0.2 0.4 0.6 0.8 1.0
δ

0.00
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0.20
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0.40

−
<

H
D

IM
>

/N

−∂/∂δ ε(α0=0)
3/8

Fig. 3. Expectation value of the dimerization operator HDIM

vs. dimerization δ without frustration (α0 = 0).

15. We could verify these numbers to the given precision
in reference [21] up to order 10.

One of the major motivations to study dimerized spin
chains comes from spin-Peierls systems where spin and
lattice degrees of freedom are coupled. In the adiabatic
description of this phenomenon one adds the elastic energy
K
2 δ

2 to the Hamiltonian (3). This term takes into account
that it costs energy to modulate the magnetic couplings.
To determine the equilibrium value of δ the ground state
energy is minimized by variation of δ

0 =
∂ε0
∂δ

+Kδ. (45)

So one has to know the derivative of ε0 which is given by
the expectation value per site of the dimerization operator
HDIM = (H(δ)−H(0))/δ with H from equation (3)

〈HDIM〉
L

=
∂ε0
∂δ
· (46)

In Figure 3 we plot ∂ε0/∂δ as derived from our results
for the ground state energy. Note that 3/8 is an upper
bound for the expectation value of the dimerization since
the dimerization is maximum if every second bond is occu-
pied by a singlet 〈S2jS2j+1〉 = −3/4. This upper bound is
excellently complied with by our results since we expand
around the limit of complete dimerization δ = 1.

Figure 4 shows the ground state energy per site for
α0 = 0.241 and α0 = 0.35. For supercritical frustration
we know that the leading term is linear in δ. In order
to be able to describe well the crossover from δ4/3 to δ
behavior we use the substitution δ = x3 and suppress
linear and quadratic terms in the Taylor expansion by
appropriate higher order terms in (1−x). This procedure
leads to a series in δ comprising terms ∝ δ and ∝ δ4/3 as
well as higher terms in δ1/3. The agreement obtained in
comparison to DMRG data is again excellent down to very
low values of dimerization. In Figure 5 the expectation
values of the corresponding dimerization operators HDIM

are plotted.
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Fig. 4. Ground state energy ε vs. dimerization δ; frustration
α0 = 0.241 (upper panel), α0 = 0.35 (lower panel). The insets
show enlargements for small δ.

We limited the range of δ for finite frustration to the in-
terval [0, 0.2]. This is required by the nature of our pertur-
bative expansion around isolated dimers. Fixing α0 (not
α!) at a finite value implies that the limit δ → 1 is not the
limit of isolated dimers. The point δ = 1 corresponds to a
spin ladder with coupling 2J0 on the rungs and α0J0 on
the legs. Of course, our bare perturbative results pertain
also to the ladder where they correspond to an expan-
sion around the rung limit. This limit has already been
investigated intensively [22] so that we refrain here from a
comprehensive analysis. Note that the perturbation in the
ladder is considerably simpler since N = 1 in equation (2)
whereas N = 2 is treated here. In other words there is no
creation or annihilation of two triplets but only shifts of
triplets or creation or annihilation of one triplet.

To understand the reason for the restricted applicabil-
ity of the analysis presented here a simple comparison of
couplings suffices. Using x = δ2/3 or x = δ1/3 is optimized
to treat the case where the coupling J0(1− δ) is the dom-
inant perturbation. As a rule of thumb this is the case if
2α0 < 1 − δ. Otherwise one has to treat the frustrating
coupling as the dominant perturbation. We restrict our
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Fig. 5. Expectation value of the dimerization operator HDIM

vs. dimerization δ; frustration α0 = 0.241 (upper panel), α0 =
0.35 (lower panel).

present analysis to the regime where the 1− δ coupling is
the dominant perturbation so that δ may not be chosen
too large. For α0 ≈ 0.35 the dimerization δ should not
exceed about 0.3.

4.2 Energy gap

The first approach is again to substitute J , λ and α in
equation (40) according to equation (5). In the case α0 = 0
our result agrees to the 9th degree polynomial Barnes
et al. [20] computed for the energy gap. For various val-
ues of α0 the results are plotted as dashed curves labeled
“plain series” in Figures 6, 7 and 8.

The solid curves were obtained by an extrapolation bi-
ased by the continuum theory results∆ ∝ δ2/3 for subcrit-
ical frustration [15] and ∆−∆|δ=0 ∝ δ2/3 for supercritical
frustration, see e.g. reference [23]. To this end, we substi-
tuted J and λ in equation (40) according to equation (5).
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Fig. 7. Energy gap ∆ vs. dimerization δ for critical frustration
α0 = 0.241.

Next δ = x3/2 is replaced treating α as a fixed parameter.
This result is re-expressed by an appropriate Padé approx-
imant about x = 1, which corresponds to the dimer limit.
As will be seen below the use of a Padé approximant in-
stead of a series in x matters only for sizable frustration.
The Padé approximant is chosen such that it takes the in-
formation about the 11 coefficients of the expansion into
account. In the final expression x = δ3/2 and α = α0

1−δ
are inserted to obtain the data shown. The comparison to
DMRG data [23] shows that the biased extrapolation is
extremely precise for most choices of parameters.

In order to check the reliability of our results in the
most difficult case we extrapolate our results to zero
dimerization. This means we employ the above proce-
dure of a biased Padé approximant and set δ = 0.
The gap dependence on the frustration α0 is depicted
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Fig. 8. Energy gap ∆ vs. dimerization δ for supercritical frus-
tration α0 = 0.35, α0 = 0.5.

in Figure 9 and compared to DMRG results [24,25]. For
comparison we include also an extrapolation of the se-
ries in x = δ2/3. Rigorously, there is no gap below
the critical value αc [26]. The numerical value (αc =
0.241167(±5)) is taken from reference [19]. The wig-
gle at about δ = 0.1 is a spurious pole resulting
from the Padé approximation which is not present in
the series representation. The Padé approximant, how-
ever, is better for larger frustration. The overall agree-
ment is good but not excellent. Obviously, neither the
Padé approximant nor the series in x are fit to de-
scribe the essential singularity at critical frustration. Yet,
more sophisticated approximants which allow to extrap-
olated in several variables (here: λ and α0) might ren-
der a more efficient analysis of the available expansion
coefficients.

To complete the analysis of our expansion coefficients
other approximants were also used. The common approach
to detect critical behaviour is to approximate the derived
logarithm of the function under study by a Padé approx-
imant (Dlog Padé). In this representation the position
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Fig. 9. Energy gap ∆ vs. frustration α at δ = 0. The dashed
vertical line indicates the value of αc.

λc of a singularity (λ − λc)γ is given by a pole and its
residue defines the critical exponent γ. The results do not
depend much on whether the Hamiltonian (3) or (4) is
used. In fact, the results for Hamiltonian (4) agree a bit
better with the predictions λc = 1 and γ = 2/3 than
those for Hamiltonian (3). In absence of frustration we
find λc = 1.002 and γ = 0.74. The value for the position
is very encouraging; the result for the critical exponent,
however, is a bit disappointing. The same observation was
made in reference [20]. No significant change in the expo-
nent occurs if the position of the singularity λc = 1 is
pre-set.

The reason for the difficulty to find the correct expo-
nent is found in the logarithmic corrections. This can be
seen in two ways. The first one is to go to the critical frus-
tration where no logarithmic corrections are present. This
proved useful in numerical analyses [24], too. Indeed, at
α0 = αc we find γ = 0.65 which agrees with 2/3 within
3%. The second is to take the logarithmic corrections into
account. Usually, they are computed for subcritical frus-
tration and given in the form [27,17,18]

∆(δ) ∝ δ2/3/| ln(δ/δ0)|1/2 (47)

where δ0 is some unknown constant. Hence, we apply the
Dlog Padé approximation to

f(δ) :=
√
− ln(δ) + h(α0)∆, (48)

where h(α0) is some constant depending on the frustra-
tion. We look at the biased approximant f ′/f = P (δ2)/δ
about δ2 = 1 where P (δ2) is a polynomial of order 9 in
δ2 which takes the obvious symmetry δ ↔ −δ of Hamilto-
nian (3) into account. To be able to expand about isolated
dimers the replacement α0 → α0(1 − δ2) is carried out.
The value P (0) then is a direct estimate for the critical
exponent γ. Assuming that the coefficients of P decrease
quickly on increasing order once the logarithmic correction
is properly taken into account we fix the constant h(α0)
such that the coefficient of order 9 vanishes. In this way we

find γ = 0.68 and h = 5.65 at zero frustration. At critical
frustration the values are 0.56 and 2.50, respectively.

The good agreement without frustration indicates that
logarithmic corrections are indeed the reason for the dif-
ficulty to determine the correct exponents from the per-
turbative data. The unsatisfactory agreement at critical
frustration tells us that the way h is determined is not
optimum. It would be very helpful if a prediction for the
gap as function of δ and α − αc existed which comprised
also the regime of supercritical frustration.

4.3 Dispersions

The one magnon dispersion ω(k) for the antiferromagnetic
Heisenberg chain is given by equation (39b). The hopping
elements ai are given in Appendix C. For α0 = 0 they
can be compared till order 5 with those computed in ref-
erence [20]. Full agreement is found.

To deduce the dispersion relations from the bare coeffi-
cients several approaches will be presented. The direct ap-
proach is again to substitute J , λ and α in equation (39b)
according to equation (5). By construction, the resulting
curves reproduce the same energy gaps at k = 0 as the
gap results labeled “plain series” in the preceding section.
We learned, however, in the preceding section that a bi-
ased extrapolation is very useful to approximate the gaps.
So the question arises how the good biased extrapolations
can be used for the description of dispersion relations.

Motivated by the behaviour of Lorentz-invariant sys-
tems where the dispersion passes from ω = vSk (vS spin
wave velocity) to ω ∝

√
∆2 + (vSk)2 when a gap opens we

use the following procedure. We substitute J and λ into
equation (39b) leading to the plain series result we shall
refer to as ωplain(k;α). Then the difference

ω2
diff(k) := ω2

plain(k;α)− ω2
plain(k = 0;α) (49)

is expanded as Taylor series about δ = 1 up to 10th order
while α is treated as fixed parameter. Only then α is sub-
stituted according to equation (5). Finally, the dispersion
is computed by the quadratic mean

ω(k) =
√
∆2(α0, δ) + ω2

diff(k). (50)

For δ = α0 = 0 the result is shown in Figure 10 where it
is also compared to the plain series result to illustrate the
effect of the quadratic mean. Both curves are compared
to the rigorous result known from Bethe ansatz [28]. The
quadratic mean matters only for low energies. Figures 11,
12 and 13 show the corresponding results for various δ
and α values for relatively low frustration in the subcritical
regime or close to it. As soon as there is some dimerization,
for instance δ ≥ 0.05 in Figure 11, the difference between
the plain series (not shown) and the quadratic mean (50)
is no longer discernible.

Entering the regime of large frustration (α0 > 0.4) the
calculations have to be modified slightly. In Figure 14 we
compare two different approaches to calculate the disper-
sion ω(k). The dashed line labeled “ωplain(k) & Taylor”
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is obtained by expanding ωplain(k;α) in a Taylor series
about δ = 1 with α as fixed parameter. Finally, α is sub-
stituted according to equation (5) for δ = 0, α0 = 0.5. The
resulting curve is far off for low wave vectors. To get good
values for the energy gap it is necessary to use the square
root representation (50). On the other hand, the value at
k = π is unity which is the exact result [29,30]. If the
square root representation (50) is used the dashed-dotted
line labeled “sqrt & Taylor” in Figure 14 is obtained. The
energy gap is nicely reproduced [30] but the agreement at
the dispersion maximum deteriorates considerably.

So one would like to have a representation at hand
which combines the advantages of the two approaches. A
convincing interpolation is achieved by replacing the Tay-
lor series by the corresponding [5,5] Padé approximant la-
beled “sqrt & Padé” in Figure 14. Figure 15 presents the
results of the latter approach for finite δ. For complete-
ness, we mention that in the α0 ≤ 0.4 regime the Padé
representation works as well as the Taylor expansion. For
instance, the Padé representation reproduces the results
presented in Figure 13 within 1%. This means that for
α0 ≤ 0.4 there is no need to use the more tedious Padé
representation. But its use for larger frustrations does not
imply an inconsistency of our general approach.

The observation that the dispersion relation for strong
frustration behaves at k ≈ 0 and at k ≈ π qualitatively
differently can be understood on physical grounds. For this
purpose let us consider the Majumdar-Ghosh model at
α0 = 1/2 without dimerization. Its low-lying excitations
are asymptotically free S = 1/2 spinons [31–33,30]. This
implies that in the vicinity of the dispersion minimum the
dispersion relation for δ → 0 does not represent the branch
of a well-defined magnon excitation. But it is the lower
band edge of a two-spinon continuum. In this respect it
is similar to the situation of subcritical frustration. So we
have to use the corresponding appropriate extrapolation
to obtain reliable results.

In the vicinity of the dispersion maximum, however,
the spinon interaction dominates over the kinetic energy
and binding occurs even without dimerization. For in-
stance, the exact triplet state [29] is a tightly bound two-
spinon state. A variational analysis shows that this bound
triplet exists below the two-spinon continuum in a finite
interval around k = π [31,33,30]. Hence, it is fully compre-
hensible that the perturbative approach which starts from
local triplets works more easily around k = π whereas im-
proved extrapolation is necessary around k = 0.

5 Conclusions

In summary, we presented a perturbative scheme which
relies on a suitably chosen unitary transformation. The
scheme works for an unperturbed equidistant spectrum
which can be labeled by the number of energy quanta. The
perturbation term changes the number of energy quanta
at maximum by a finite number N . Thereby, we gener-
alized the approach by Stein (N = 1) [8] to general N .
The unitary transformation is carried out by flow equa-
tions [10].

By the transformation a systematic mapping of the
original problem to an effective Hamiltonian is achieved
which conserves the number of energy quanta. Thus
Hilbert space sectors with different number of energy
quanta are separated. Our scheme will be particularly use-
ful where ordinary perturbation theory is hampered by
the fact that the structure of the perturbed states is not
known, for instance, systems without translation invari-
ance or two-particle problems. The possibility to obtain
information in symbolic form, i.e. as polynomials, dis-
tinguishes our approach from the multiprecision method
by Barnes et al. [20] and other conventional implementa-
tions [21].

The realization of the perturbative scheme comprises
two distinct steps. The first is still general, the second
specific to the model. For the first step we provided the
necessary coefficient up to order 10 for N = 2. In written
form they are included till order 6 in this publication. The
other coefficients shall be provided electronically.

The second step is illustrated by dimerized frustrated
S = 1/2 chains. The limit of isolated dimers has an
equidistant spectrum. The ground state is the product
of singlets on the dimers. The energy quanta are triplets
on the dimers. The perturbing weak couplings between
the dimers may create/annihilate at most two triplets so
that N = 2 holds. After the transformation the num-
ber of triplets is conserved. We presented results for the
ground state (zero triplets) and the magnon dispersion
(one triplet). Thereby we demonstrated the validity and
applicability of the scheme proposed.

The results for the spin chains are given as polynomials
in λ and in the frustration parameter α. So they are easy
to use for anybody who wants to analyze data by appropri-
ate fits. No new calculations are necessary. The fits can be
carried out instantly. Based on the results for the dimer-
ization operator HD the dependence of the dimerization δ
on the elastic spring constant K is quickly accessible.

As we demonstrated our results are reliable down to
about 6% without additional information, i.e. using the
plain series. With additional information as the critical ex-
ponent, for instance, the results can reliably be used down
to about 2%, in some cases even less. Moreover, starting
from the exact coefficients more elaborate schemes like
differential approximants in two variables become possi-
ble [34].

As an outlook we like to point out that our ap-
proach can also be used to compute dispersion relations
in two or higher dimensional dimerized spin systems as
demonstrated recently for (VO)2P2O7 [7]. Investigations
for CuGeO3 are in preparation. They will improve con-
siderably the third order analysis [35]. Another fascinat-
ing field concerns computations in the two-magnon sec-
tor. The attractive interaction of two magnons [16], for
instance, leads to bound states. For (VO)2P2O7, which
is characterized by a relatively large dimerization, such
results were found in a fourth order calculation. If the
unitary transformation is applied to observables like, for
instance, the Raman operator spectral functions are also
within reach.
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Note added in proof

After acceptance of the manuscript we became aware
of two related works using other expansion techniques
around the dimer limit. These results are computed at
fixed values of the frustration α0 but partially at higher
order (λ23 for the ground state energy, λ11 for the dis-
persion for α0 ∈ {0, 0.2411, 0.5} in R.R.P. Singh and Z.
Weihong, Phys. Rev. B 59, 9911 (1999); λ10 for the gap
at α0 = 0 in A. Honecker, Phys. Rev. B 59, 6790 (1999)).

Appendix A: Proof of block diagonality

It is shown that the choice (12) for the infinitesimal gen-
erator achieves block diagonality for the effective Hamil-
tonian H(` = ∞). The proof follows the lines of Mielkes
proof for band matrices [14]. Let {|νi〉} be the eigen state
basis of H0 and define

hij(`) := 〈νi|H(`)|νj〉
h0
ij := 〈νi|H0|νj〉

ηij(`) := 〈νi|η(`)|νj〉.

Inspecting equations (9, 10, 12) closely one realizes that
the choice for the infinitesimal generator is equivalent to

ηij(`) = sgn(h0
ii − h0

jj)hij(`). (A.1)

Inserting this expression in flow equation (8) yields

∂hij
∂`

= −sgn(h0
ii − h0

jj)(hii − hjj)hij

+
∑
k 6=i,j

(sgn(h0
ii − h0

kk) + sgn(h0
jj − h0

kk))|hik|2. (A.2)

Assume without loss of generality that the eigen states |νi〉
are labeled such that h0

kk ≥ h0
ii if k > i. Let us consider

the sum of the first r diagonal elements of H(`)

∂

∂`

r∑
i=1

hii = 2
r∑
i=1

∑
k>r

sgn(h0
ii − h0

kk)|hik|2. (A.3)

The right side of equation (A.3) is non-positive. Thus the
sum on the left hand side is a continuous monotonically
decreasing function with `. If we know that it is bounded
from below we conclude that the sum converges whence
the vanishing of its derivative for ` → ∞ ensues immedi-
ately. Hence we need beyond the conditions (i) and (ii) in

the Introduction the boundedness for the whole Hamilto-
nian. If this is not given our choice for η might be problem-
atic whereas Wegner’s choice still works (for an example,
see Ref. [36]).

As we are, however, interested in deriving a perturba-
tion expansion order by order we can assume the whole
Hamiltonian to be bounded from below without loss of
generality. For any finite order of the expansion it is suf-
ficient to consider a finite cluster supposing some short
range interaction. Then the Hamiltonian is a finite dimen-
sional matrix and is certainly bounded from below. This
is true in particular if we stay on the abstract level as in
equation (2). The generalized variational principle implies
that

r∑
i=1

hii ≥
r∑
i=1

ωi (A.4)

holds for all ` where the ωi are the eigen values of H in
ascending order. Note that the eigen values are invariant
under the unitary transformation.

The vanishing of the derivative of
∑r
i=1 hii for arbi-

trary r implies eventually

lim
`→∞

sgn(h0
ii − h0

kk)|hik|2 = 0. (A.5)

From this equation follows that either the eigen states |νi〉
and |νk〉 are degenerate, i.e. they belong to the same block,
or hik(` = ∞) = 0, i.e. matrix elements linking different
blocks vanish. Hence block diagonality is achieved and the
number of energy quanta given by H0 is conserved

lim
`→∞

[H0,H(`)] = 0. (A.6)

This concludes the formal proof.
To restrict the argument at one stage to finite clusters

does not constitute a real restriction for the series expan-
sion in any finite order. The linked cluster theorem tells
us that any finite order can be found from an appropriate
finite cluster.

In practice, the important issue is whether the physics
remains the same on variation of the expansion parame-
ter λ. In our example of dimerized chains the expansion
makes sense as long as the gap does not close. In other
words, those situations are accessible which can be linked
continuously to the dimer limit by gapped systems. Gap-
less situations can only be described if they are the limit
of gapped systems linked to the dimer limit.

Appendix B: Coefficients of the effective
Hamiltonian

In the following tables the coefficients C(m) of the effec-
tive Hamiltonian (25) are given up to sixth order inclu-
sively. Order 7 to 10 will be available electronically1.

1

at www.thp.uni-koeln.de/~ck/

or www.thp.uni-koeln.de/~gu/

or www.edpsciences.org



C. Knetter and G.S. Uhrig: Perturbation theory by flow equations: dimerized and frustrated S = 1/2 chain 223

m C(m)

|m| = 1

0 1

|m| = 2

1-1 1
2-2 1/2

|m| = 3

01-1 −1/2
02-2 −1/8
10-1 1
11-2 1/2
1-21 −1
20-2 1/4

|m| = 4

001-1 1/4
002-2 1/32
010-1 −1
011-2 −3/8
01-21 1/4
01-10 1/2
020-2 −1/8
02-20 1/16
02-1-1 −3/8
100-1 1
101-2 1/2
10-21 −1
110-2 1/4
11-1-1 1/2
12-2-1 1/3
12-1-2 1/6
1-22-1 −1
1-2-12 1/2
1-11-1 −1
1-12-2 −3/8
1-1-22 1/8
200-2 1/8
21-1-2 1/12
22-2-2 1/16
2-22-2 −1/8
2-11-2 1/4

|m| = 5

0001-1 −1/8
0002-2 −1/128
0010-1 3/4
0011-2 7/32
001-21 −5/16
001-10 −3/8
0020-2 3/64
002-20 −3/128
002-1-1 7/32
0100-1 −3/2
0101-2 −5/8
010-21 7/8
010-10 3/2
0110-2 −1/4
011-20 7/16
011-1-1 −5/8
012-2-1 −7/18
012-1-2 −11/72
01-201 1/8
01-210 −3/8
01-22-1 1/2
01-2-12 −1/24
01-11-1 9/8
01-12-2 35/96
01-1-22 −19/96
01-1-11 −3/8
0200-2 −3/32
020-20 3/32
020-1-1 −1/4
021-2-1 −11/72
021-1-2 −1/18
022-2-2 −5/128

m C(m)

|m| = 5

02-21-1 7/24
02-22-2 9/128
02-2-22 −3/128
02-2-11 −1/12
02-10-1 −5/8
02-11-2 −1/4
02-1-21 7/24
1000-1 1
1001-2 1/2
100-21 −1
1010-2 1/4
101-1-1 1/2
102-2-1 1/3
102-1-2 1/6
10-201 1
10-22-1 −1
10-2-12 1/2
10-11-1 −3/2
10-12-2 −5/8
10-1-22 3/8
10-1-11 1/2
1100-2 1/8
110-1-1 1/4
111-2-1 1/6
111-1-2 1/12
112-2-2 1/16
11-21-1 −5/8
11-22-2 −1/4
11-2-22 1/8
11-2-11 1/8
11-11-2 1/4
11-1-21 −1/2
120-2-1 1/9
120-1-2 1/18
121-2-2 1/24
12-21-2 1/6
12-2-21 −1/3
12-10-2 1/12
1-202-1 1
1-20-12 −1/2
1-211-1 1/4
1-212-2 0
1-21-22 1/4
1-21-11 3/4
1-221-2 −1/2
1-22-21 1
1-2-212 −1/6
1-2-102 −1/4
1-101-1 3/4
1-102-2 7/32
1-10-22 −3/32
1-10-11 −1/4
1-111-2 −5/8
1-120-2 −1/4
1-1-202 0
1-1-1-12 1/8
2000-2 1/16
201-1-2 1/24
202-2-2 1/32
20-22-2 −3/32
20-2-22 1/32
20-11-2 1/8
210-1-2 1/36
211-2-2 1/48
21-21-2 1/12
220-2-2 1/64
2-202-2 3/64
2-20-22 −1/64
2-211-2 −1/4
2-2-1-12 1/8
2-101-2 1/4
2-1-2-12 1/4

m C(m)

|m| = 6

00001-1 1/16
00002-2 1/512
00010-1 −1/2
00011-2 −15/128
0001-21 5/64
0001-10 1/4
00020-2 −1/64
0002-20 1/128
0002-1-1 −15/128
00100-1 3/2
00101-2 17/32
0010-21 −3/4
0010-10 −3/2
00110-2 11/64
0011-20 −45/128
0011-1-1 17/32
0012-2-1 17/54
0012-1-2 85/864
001-201 1/2
001-210 1/64
001-22-1 −13/24
001-2-12 53/288
001-100 3/8
001-11-1 −29/32
001-12-2 −301/1152
001-1-22 179/1152
001-1-11 7/32
00200-2 3/64
0020-20 −3/64
0020-1-1 11/64
0021-2-1 85/864
0021-1-2 43/1728
0022-2-2 17/1024
002-200 3/256
002-21-1 −197/1152
002-22-2 −29/1024
002-2-22 7/1024
002-2-11 −23/1152
002-10-1 17/32
002-11-2 11/64
002-1-21 −65/288
002-1-10 −45/128
01000-1 −2
01001-2 −7/8
0100-21 23/16
0100-10 3
01010-2 −3/8
0101-20 17/16
0101-1-1 −7/8
0102-2-1 −5/9
0102-1-2 −17/72
010-201 −5/8
010-210 −3/4
010-22-1 9/8
010-2-12 −7/18
010-11-1 39/16
010-12-2 269/288
010-1-22 −181/288
010-1-11 −17/16
01100-2 −5/32
0110-20 11/32
0110-1-1 −3/8
0111-2-1 −17/72
0111-1-2 −7/72
0112-2-2 −9/128
011-21-1 5/6
011-22-2 113/384
011-2-22 −67/384
011-2-11 −7/24
011-10-1 −7/8
011-11-2 −3/8
011-1-21 7/12

m C(m)

|m| = 6

011-1-10 17/16
0120-2-1 −4/27
0120-1-2 −13/216
0121-2-2 −25/576
012-20-1 −5/9
012-21-2 −17/72
012-2-21 103/288
012-2-10 17/27
012-10-2 −7/72
012-1-20 85/432
012-1-1-1 −17/72
01-2001 −9/16
01-202-1 0
01-20-12 −1/6
01-211-1 −2/3
01-212-2 −15/64
01-21-22 37/192
01-21-11 13/24
01-220-1 7/8
01-221-2 1/3
01-22-21 −5/16
01-22-10 −11/12
01-2-212 −1/144
01-2-221 −25/288
01-2-102 −1/36
01-2-111 −1/6
01-2-120 31/144
01-101-1 −1
01-102-2 −329/1152
01-10-22 53/384
01-10-11 3/16
01-110-1 33/16
01-111-2 73/96
01-11-21 −49/48
01-11-10 −27/16
01-120-2 151/576
01-12-20 −149/384
01-12-1-1 73/96
01-1-202 47/576
01-1-211 17/96
01-1-220 113/1152
01-1-101 7/16
01-1-12-1 −31/48
01-1-1-12 17/96
02000-2 −1/16
0200-20 3/32
0200-1-1 −5/32
0201-2-1 −7/72
0201-1-2 −11/288
0202-2-2 −7/256
020-21-1 73/288
020-22-2 39/512
020-2-22 −17/512
020-2-11 −17/288
020-10-1 −3/8
020-11-2 −5/32
020-1-21 2/9
0210-2-1 −13/216
0210-1-2 −5/216
0211-2-2 −19/1152
021-20-1 −17/72
021-21-2 −7/72
021-2-21 19/144
021-10-2 −11/288
021-1-20 43/864
021-1-1-1 −7/72
0220-2-2 −3/256
022-20-2 −7/256
022-2-20 17/512
022-2-1-1 −9/128
022-1-2-1 −25/576
022-1-1-2 −19/1152

m C(m)

|m| = 6

02-201-1 −211/1152
02-202-2 −1/32
02-20-22 3/512
02-20-11 −7/384
02-210-1 95/144
02-211-2 85/384
02-21-21 −53/192
02-220-2 33/512
02-22-20 −27/512
02-22-1-1 85/384
02-2-202 7/512
02-2-211 23/384
02-2-101 31/144
02-2-12-1 −11/64
02-2-1-12 23/384
02-100-1 −7/8
02-101-2 −3/8
02-10-21 7/12
02-110-2 −5/32
02-11-20 11/32
02-11-1-1 −3/8
02-12-2-1 −17/72
02-12-1-2 −7/72
02-1-201 −5/36
02-1-22-1 5/12
02-1-2-12 −11/96
02-1-11-1 5/6
02-1-12-2 113/384
02-1-1-22 −67/384
02-1-1-11 −7/24
10000-1 1
10001-2 1/2
1000-21 −1
10010-2 1/4
1001-1-1 1/2
1002-2-1 1/3
1002-1-2 1/6
100-201 1
100-22-1 −1
100-2-12 1/2
100-11-1 −2
100-12-2 −7/8
100-1-22 5/8
100-1-11 1
10100-2 1/8
1010-1-1 1/4
1011-2-1 1/6
1011-1-2 1/12
1012-2-2 1/16
101-21-1 −7/8
101-22-2 −3/8
101-2-22 1/4
101-2-11 3/8
101-10-1 1/2
101-11-2 1/4
101-1-21 −1/2
1020-2-1 1/9
1020-1-2 1/18
1021-2-2 1/24
102-20-1 1/3
102-21-2 1/6
102-2-21 −1/3
102-10-2 1/12
102-1-1-1 1/6
10-202-1 1
10-20-12 −1/2
10-211-1 5/8
10-212-2 3/16
10-21-22 1/16
10-21-11 3/8
10-220-1 −1
10-221-2 −1/2

m C(m)

|m| = 6

10-22-21 1
10-2-212 −1/6
10-2-221 −1/3
10-2-102 −1/4
10-2-111 −1/2
10-101-1 3/2
10-102-2 17/32
10-10-22 −9/32
10-10-11 −1/2
10-110-1 −2
10-111-2 −7/8
10-11-21 5/4
10-120-2 −3/8
10-12-1-1 −7/8
10-1-202 −1/8
10-1-211 −1/8
10-1-12-1 3/4
10-1-1-12 −1/8
11000-2 1/16
1100-1-1 1/8
1101-2-1 1/12
1101-1-2 1/24
1102-2-2 1/32
110-21-1 −3/8
110-22-2 −5/32
110-2-22 3/32
110-2-11 1/8
110-11-2 1/8
110-1-21 −1/4
1110-2-1 1/18
1110-1-2 1/36
1111-2-2 1/48
111-21-2 1/12
111-2-21 −1/6
111-10-2 1/24
111-1-1-1 1/12
1120-2-2 1/64
112-20-2 1/32
112-2-1-1 1/16
112-1-2-1 1/24
112-1-1-2 1/48
11-201-1 17/32
11-202-2 11/64
11-20-22 −5/64
11-20-11 −5/32
11-211-2 −3/8
11-21-21 1/2
11-220-2 −5/32
11-22-1-1 −3/8
11-2-202 −1/32
11-2-12-1 1/4
11-101-2 1/4
11-10-21 −1/2
11-110-2 1/8
11-11-1-1 1/4
11-12-2-1 1/6
11-12-1-2 1/12
11-1-22-1 −1/2
11-1-2-12 1/4
11-1-11-1 −7/8
11-1-12-2 −3/8
11-1-1-22 1/4
11-1-1-11 3/8
1200-2-1 1/27
1200-1-2 1/54
1201-2-2 1/72
120-21-2 1/18
120-2-21 −1/9
120-10-2 1/36
1210-2-2 1/96
121-20-2 1/48
121-1-2-1 1/36

m C(m)

|m| = 6

121-1-1-2 1/72
122-2-2-1 1/45
122-2-1-2 1/90
122-1-2-2 1/120
12-201-2 1/6
12-20-21 −1/3
12-210-2 1/12
12-22-2-1 1/9
12-22-1-2 1/18
12-2-22-1 −1/3
12-2-2-12 1/6
12-2-11-1 −5/9
12-2-12-2 −17/72
12-2-1-22 11/72
12-2-1-11 2/9
12-100-2 1/24
12-11-2-1 1/18
12-11-1-2 1/36
12-12-2-2 1/48
12-1-21-1 −17/72
12-1-22-2 −7/72
12-1-2-22 1/18
12-1-2-11 5/72
12-1-11-2 1/12
12-1-1-21 −1/6
1-2002-1 −1
1-200-12 1/2
1-2011-1 3/8
1-2012-2 5/16
1-201-22 −9/16
1-201-11 −11/8
1-2021-2 1/2
1-202-21 −1
1-20-212 1/6
1-20-102 1/4
1-2101-1 −7/16
1-2102-2 −5/32
1-210-22 7/32
1-210-11 11/16
1-2111-2 1/4
1-2120-2 1/16
1-21-202 −3/16
1-21-12-1 1/2
1-21-1-12 −1/2
1-2201-2 −1/2
1-2210-2 −1/4
1-222-1-2 −1/6
1-22-22-1 1
1-22-2-12 −1/2
1-22-11-1 1
1-22-12-2 3/8
1-22-1-22 −1/8
1-22-1-11 0
1-2-2012 1/18
1-2-2102 1/12
1-2-222-1 −1/3
1-2-22-12 1/6
1-2-2-122 1/24
1-2-1002 1/8
1-2-112-1 −1/2
1-2-11-12 1/4
1-2-121-1 1/24
1-2-122-2 1/12
1-2-12-22 −5/24
1-2-12-11 −13/24
1-2-1-222 1/16
1-2-1-112 1/12
1-1001-1 −1/2
1-1002-2 −15/128
1-100-22 5/128
1-1011-2 17/32
1-1020-2 11/64
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m C(m)

|m| = 6

1-10-202 3/64
1-10-1-12 5/32
1-1101-2 −7/8
1-1110-2 −3/8
1-112-1-2 −17/72
1-11-2-12 −7/24
1-11-11-1 2
1-11-12-2 71/96
1-11-1-22 −43/96
1-11-1-11 −3/4
1-1200-2 −5/32
1-121-1-2 −7/72
1-122-2-2 −9/128
1-12-21-1 31/48
1-12-22-2 83/384

m C(m)

|m| = 6

1-12-2-22 −41/384
1-12-2-11 −3/16
1-12-11-2 −3/8
1-1-2002 −1/32
1-1-21-12 −1/8
1-1-221-1 −11/48
1-1-222-2 −25/384
1-1-22-22 19/384
1-1-2-222 −1/128
1-1-2-112 −1/72
1-1-10-12 −3/8
1-1-111-1 −1/2
1-1-112-2 −19/96
1-1-11-22 23/96
1-1-121-2 5/24

m C(m)

|m| = 6

1-1-1-212 −5/72
1-1-1-102 −1/8
20000-2 1/32
2001-1-2 1/48
2002-2-2 1/64
200-22-2 −1/16
200-2-22 1/32
200-11-2 1/16
2010-1-2 1/72
2011-2-2 1/96
201-21-2 1/24
201-10-2 1/48
2020-2-2 1/128
202-20-2 1/64
202-1-1-2 1/96

m C(m)

|m| = 6

20-202-2 3/64
20-20-22 −1/64
20-211-2 −5/32
20-220-2 −1/16
20-2-1-12 1/32
20-101-2 1/8
20-110-2 1/16
20-12-1-2 1/24
20-1-2-12 1/8
20-1-12-2 −5/32
20-1-1-22 3/32
2100-1-2 1/108
2101-2-2 1/144
210-21-2 1/36
2110-2-2 1/192

m C(m)

|m| = 6

211-1-1-2 1/144
212-2-1-2 1/180
212-1-2-2 1/240
21-201-2 1/12
21-22-1-2 1/36
21-2-2-12 1/12
21-2-12-2 −7/72
21-2-1-22 1/18
21-11-1-2 1/72
21-12-2-2 1/96
21-1-22-2 −11/288
21-1-2-22 5/288
21-1-11-2 1/24
2200-2-2 1/256
221-1-2-2 1/320

m C(m)

|m| = 6

222-2-2-2 1/384
22-22-2-2 1/128
22-2-22-2 −7/256
22-2-2-22 3/256
22-2-11-2 1/32
22-11-2-2 1/192
22-1-21-2 1/48
2-2002-2 −1/64
2-2011-2 11/64
2-20-1-12 5/64
2-2101-2 −3/8
2-21-2-12 −1/12
2-21-12-2 49/192
2-21-1-22 −9/64
2-22-22-2 1/16

m C(m)

|m| = 6

2-22-2-22 −3/128
2-22-11-2 −5/32
2-2-21-12 −3/32
2-2-222-2 −1/64
2-2-10-12 −1/4
2-2-112-2 −17/192
2-2-121-2 1/24
2-1001-2 1/4
2-10-2-12 1/4
2-11-11-2 1/8
2-12-21-2 1/12
2-1-221-2 −1/4
2-1-111-2 −3/8

Appendix C: Effective hopping elements
for the spin chain

In the following the effective hopping elements as they
appear in equation (38) are given up to order 6. The ef-
fective hopping elements up to order 10 will be provided
electronically. We substituted α = 1− 2α and λ = 1

4λ.

a0 − E0 = 1−
�

4− 3α2

�
λ

2 −
�

8− 8α− 6α2 + 3α3

�
λ

3 −
�

2− 24α+ 5α2 + 8α3 +
13

4
α4

�
λ

4

+

�
56− 82α− 22α2 + 55α3 − 39α4 + 20α5

�
λ

5

+

�
367

3
− 7328

9
α+

22976

27
α2 +

6442

27
α3 − 28895

54
α4 + 193α5 − 32α6

�
λ

6

a1 = −2αλ− 4λ
2 −

�
8− 8α− 2α3

�
λ

3
+

�
4 + 20α− 24α2 + 10α3 − 5α4

�
λ

4

+

�
92− 499

3
α− 164

3
α2 + 152α3 − 47α4 +

13

2
α5

�
λ

5

+

�
532

3
− 11906

9
α+

11960

9
α2 +

1648

3
α3 − 41357

54
α4 + 85α5 + 6α6

�
λ

6

a2 = −α2λ
2 −

�
4α2 − 2α3

�
λ

3
+

�
6− 4α− 23α2 + 14α3 − 1

2
α4

�
λ

4

+

�
36− 272

3
α− 220

3
α2 +

1150

9
α3 − 9α4 − 13

2
α5

�
λ

5

+

�
107

3
− 1630

3
α+

1126

3
α2 +

5102

9
α3 − 13205

36
α4 − 59α5 + 11α6

�
λ

6

a3 = −α3λ
3 −

�
10

3
α2 + 4α3 − 2α4

�
λ

4 −
�

19

3
α+ 20α2 − 10

3
α3 − 11α4 − 3α5

�
λ

5

−
�

58

3
+

104

3
α− 224

9
α2 − 63α3 +

103

2
α4 − 57

2
α5 +

81

4
α6

�
λ

6

a4 = −5

4
α4λ

4 −
�

40

9
α3 + 6α4 − 3α5

�
λ

5
+

�
11

3
α2 − 827

27
α3 − 1127

36
α4 +

91

4
α5 +

73

16
α6

�
λ

6

a5 = −7

4
α5λ

5 −
�

497

54
α4 + 10α5 − 5α6

�
λ

6

a6 = −21

8
α6λ

6
.
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